Invariant subspaces generated by a single function in the polydisc
Autor: | Koca, Beyaz Basak, Sadik, Nazim |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Math Notes (2017) 102: 193-197 |
Druh dokumentu: | Working Paper |
DOI: | 10.1134/S0001434617070215 |
Popis: | In this study, we partially answer the question left open in Rudin's book "Function theory in polydiscs" on the structure of invariant subspaces of the Hardy space $H^2(U^n)$ on the polydisc $U^n$. We completely describe all invariant subspaces generated by a single function in the polydisc. Then, using our results, we give the unitary equivalence of this type of invariant subspace and a characterization of outer functions in $H^2(U^n)$. Comment: 6 pages, minor changes in notation |
Databáze: | arXiv |
Externí odkaz: |