Invariant subspaces generated by a single function in the polydisc

Autor: Koca, Beyaz Basak, Sadik, Nazim
Rok vydání: 2016
Předmět:
Zdroj: Math Notes (2017) 102: 193-197
Druh dokumentu: Working Paper
DOI: 10.1134/S0001434617070215
Popis: In this study, we partially answer the question left open in Rudin's book "Function theory in polydiscs" on the structure of invariant subspaces of the Hardy space $H^2(U^n)$ on the polydisc $U^n$. We completely describe all invariant subspaces generated by a single function in the polydisc. Then, using our results, we give the unitary equivalence of this type of invariant subspace and a characterization of outer functions in $H^2(U^n)$.
Comment: 6 pages, minor changes in notation
Databáze: arXiv