Interstellar neutral helium in the heliosphere from IBEX observations. IV. Flow vector, Mach number, and abundance of the Warm Breeze

Autor: Kubiak, M. A., Swaczyna, P., Bzowski, M., Sokol, J. M., Fuselier, S. A., Galli, A., Heirtzler, D., Kucharek, H., Leonard, T. W., Moebius, D. J. McComas E., Park, J., Schwadron, N. A., Wurz, P.
Rok vydání: 2016
Předmět:
Druh dokumentu: Working Paper
DOI: 10.3847/0067-0049/223/2/25
Popis: With the velocity vector and temperature of the pristine interstellar neutral (ISN) He recently obtained with high precision from a coordinated analysis summarized by McComas et al.2015b, we analyzed the IBEX observations of neutral He left out from this analysis. These observations were collected during the ISN observation seasons 2010---2014 and cover the region in the Earth's orbit where the Warm Breeze persists. We used the same simulation model and a very similar parameter fitting method to that used for the analysis of ISN He. We approximated the parent population of the Warm Breeze in front of the heliosphere with a homogeneous Maxwell-Boltzmann distribution function and found a temperature of $\sim 9\,500$ K, an inflow speed of 11.3 km s$^{-1}$, and an inflow longitude and latitude in the J2000 ecliptic coordinates $251.6^\circ$, $12.0^\circ$. The abundance of the Warm Breeze relative to the interstellar neutral He is 5.7\% and the Mach number is 1.97. The newly found inflow direction of the Warm Breeze, the inflow directions of ISN H and ISN He, and the direction to the center of IBEX Ribbon are almost perfectly co-planar, and this plane coincides within relatively narrow statistical uncertainties with the plane fitted only to the inflow directions of ISN He, ISN H, and the Warm Breeze. This co-planarity lends support to the hypothesis that the Warm Breeze is the secondary population of ISN He and that the center of the Ribbon coincides with the direction of the local interstellar magnetic field. The common plane for the direction of inflow of ISN gas, ISN H, the Warm Breeze, and the local interstellar magnetic field %includes the Sun and is given by the normal direction: ecliptic longitude $349.7^\circ \pm 0.6^\circ$ and latitude $35.7^\circ \pm 0.6^\circ$ in the J2000 coordinates, with the correlation coefficient of 0.85.
Comment: Accepted for publication in Astrophysical Journal Supplement Series
Databáze: arXiv