Asymptotic formulas for determinants of a special class of Toeplitz + Hankel matrices

Autor: Basor, Estelle L., Ehrhardt, Torsten
Rok vydání: 2016
Předmět:
Druh dokumentu: Working Paper
Popis: We compute the asymptotics of the determinants of certain $n\times n$ Toeplitz + Hankel matrices $T_n(a)+H_n(b)$ as $n\to\infty$ with symbols of Fisher-Hartwig type. More specifically we consider the case where $a$ has zeros and poles and where $b$ is related to $a$ in specific ways. Previous results of Deift, Its and Krasovsky dealt with the case where $a$ is even. We are generalizing this in a mild way to certain non-even symbols.
Databáze: arXiv