Asymptotic formulas for determinants of a special class of Toeplitz + Hankel matrices
Autor: | Basor, Estelle L., Ehrhardt, Torsten |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We compute the asymptotics of the determinants of certain $n\times n$ Toeplitz + Hankel matrices $T_n(a)+H_n(b)$ as $n\to\infty$ with symbols of Fisher-Hartwig type. More specifically we consider the case where $a$ has zeros and poles and where $b$ is related to $a$ in specific ways. Previous results of Deift, Its and Krasovsky dealt with the case where $a$ is even. We are generalizing this in a mild way to certain non-even symbols. |
Databáze: | arXiv |
Externí odkaz: |