Clustering coefficient of random intersection graphs with infinite degree variance
Autor: | Bloznelis, Mindaugas, Kurauskas, Valentas |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | For a random intersection graph with a power law degree sequence having a finite mean and an infinite variance we show that the global clustering coefficient admits a tunable asymptotic distribution. Comment: In this refined version of the paper a superfluous moment condition has been removed in the statement of Theorem 3 |
Databáze: | arXiv |
Externí odkaz: |