Sharp $L^{p}$-Boundedness of Oscillatory Integral Operators with Polynomial Phases
Autor: | Shi, Zuoshunhua, Yan, Dunyan |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Mathematische Zeitschrift 2017 Volume 286 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s00209-016-1800-0 |
Popis: | In this paper, we shall prove the $L^{p}$ endpoint decay estimates of oscillatory integral operators with homogeneous polynomial phases $S$ in $\mathbb{R} \times \mathbb{R}$. As a consequence, sharp $L^{p}$ decay estimates are also obtained when polynomial phases have the form $S(x^{m_{1}},y^{m_{2}})$ with $m_1$ and $m_2$ being positive integers. Comment: 27 pages |
Databáze: | arXiv |
Externí odkaz: |