Sharp $L^{p}$-Boundedness of Oscillatory Integral Operators with Polynomial Phases

Autor: Shi, Zuoshunhua, Yan, Dunyan
Rok vydání: 2016
Předmět:
Zdroj: Mathematische Zeitschrift 2017 Volume 286
Druh dokumentu: Working Paper
DOI: 10.1007/s00209-016-1800-0
Popis: In this paper, we shall prove the $L^{p}$ endpoint decay estimates of oscillatory integral operators with homogeneous polynomial phases $S$ in $\mathbb{R} \times \mathbb{R}$. As a consequence, sharp $L^{p}$ decay estimates are also obtained when polynomial phases have the form $S(x^{m_{1}},y^{m_{2}})$ with $m_1$ and $m_2$ being positive integers.
Comment: 27 pages
Databáze: arXiv