Riemann-Stieltjes integrals driven by irregular signals in Banach spaces and rate-independent characteristics of their irregularity
Autor: | Łochowski, R. M. |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Journal of Inequalities and Applications 2018,2018:20 |
Druh dokumentu: | Working Paper |
DOI: | 10.1186/s13660-018-1611-4 |
Popis: | We prove an inequality of the Lo\'{e}ve-Young type for the Riemann-Stieltjes integrals driven by irregular signals attaining their values in Banach spaces and, as a result, we derive a new theorem on the existence of the Riemann-Stieltjes integrals driven by such signals. Also, for any $p\ge1$ we introduce the space of regulated signals $f:[a,b] \rightarrow W$ ($a0$ by signals whose total variation is of order $\delta^{1-p}$ as $\delta\rightarrow 0+$ and prove that they satisfy the assumptions of the theorem. Finally, we derive more exact, rate-independent characterisations of the irregularity of the integrals driven by such signals. Comment: arXiv admin note: text overlap with arXiv:1409.3757 |
Databáze: | arXiv |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |