A note on the subadditivity of Syzygies
Autor: | Khoury, Sabine El, Srinivasan, Hema |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $R=S/I$ be a graded algebra with $t_i$ and $T_i$ being the minimal and maximal shifts in the minimal $S$ resolution of $R$ at degree $i$. In this paper we prove that $t_n\leq t_1+T_{n-1}$, for all $n$ and as a consequence, we show that for Gorenstein algebras of codimension $h$, the subadditivity of maximal shifts $T_i$ in the minimal resolution holds for $i \geq h-1$, i.e, we show that $T_i \leq T_a+T_{i-a}$ for $i\geq h-1$. Comment: 4 pages |
Databáze: | arXiv |
Externí odkaz: |