Lines on quartic surfaces

Autor: Degtyarev, Alex, Itenberg, Ilia, Sertöz, Ali Sinan
Rok vydání: 2016
Předmět:
Zdroj: Math. Ann., 368 (2017), 753--809
Druh dokumentu: Working Paper
DOI: 10.1007/s00208-016-1484-0
Popis: We show that the maximal number of (real) lines in a (real) nonsingular spatial quartic surface is 64 (respectively, 56). We also give a complete projective classification of all quartics containing more than 52 lines: all such quartics are projectively rigid. Any value not exceeding 52 can appear as the number of lines of an appropriate quartic.
Databáze: arXiv