Autor: |
Degtyarev, Alex, Itenberg, Ilia, Sertöz, Ali Sinan |
Rok vydání: |
2016 |
Předmět: |
|
Zdroj: |
Math. Ann., 368 (2017), 753--809 |
Druh dokumentu: |
Working Paper |
DOI: |
10.1007/s00208-016-1484-0 |
Popis: |
We show that the maximal number of (real) lines in a (real) nonsingular spatial quartic surface is 64 (respectively, 56). We also give a complete projective classification of all quartics containing more than 52 lines: all such quartics are projectively rigid. Any value not exceeding 52 can appear as the number of lines of an appropriate quartic. |
Databáze: |
arXiv |
Externí odkaz: |
|