On the Fractional p-laplacian equations with weight and general datum

Autor: Abdellaoui, B., Attar, A., Bentifour, R.
Rok vydání: 2016
Předmět:
Druh dokumentu: Working Paper
Popis: The aim of this paper is to treat the following problem $$ (P) \left\{ \begin{array}{rcll} (-\Delta)^s_{p, \beta} u &= & f(x,u) &\mbox{ in }\Omega, u & = & 0 &\mbox{ in } \mathds{R}^N\setminus\Omega, \end{array} \right. $$ where $$ (-\Delta)^s_{p,\beta}\, u(x):=P.V. \int_{\mathds{R}^N}\frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))}{|x-y|^{N+ps}} \frac{dy}{|x|^\beta|y|^\beta},$$ $\Omega$ is a bounded domain containing the origin, $0\le \beta<\frac{N-ps}{2} $, $1
Databáze: arXiv