Autor: |
Dascalescu, Sorin, Iovanov, Miodrag C., Predut, Sorina |
Rok vydání: |
2015 |
Předmět: |
|
Zdroj: |
Linear Algebra Appl., Vol. 439 (2013), no. 10, 3166--3172 |
Druh dokumentu: |
Working Paper |
Popis: |
We discuss when the incidence coalgebra of a locally finite preordered set is right co-Frobenius. As a consequence, we obtain that a structural matrix algebra over a field $k$ is Frobenius if and only if it consists, up to a permutation of rows and columns, of diagonal blocks which are full matrix algebras over $k$. |
Databáze: |
arXiv |
Externí odkaz: |
|