Spectral asymptotics for first order systems

Autor: Avetisyan, Zhirayr, Fang, Yan-Long, Vassiliev, Dmitri
Rok vydání: 2015
Předmět:
Zdroj: Journal of Spectral Theory, 2016, vol. 6, p. 695-715
Druh dokumentu: Working Paper
DOI: 10.4171/JST/137
Popis: This is a review paper outlining recent progress in the spectral analysis of first order systems. We work on a closed manifold and study an elliptic self-adjoint first order system of linear partial differential equations. The aim is to examine the spectrum and derive asymptotic formulae for the two counting functions. Here the two counting functions are those for the positive and the negative eigenvalues. One has to deal with positive and negative eigenvalues separately because the spectrum is, generically, asymmetric.
Comment: Edited in accordance with referee's recommendations
Databáze: arXiv