Octahedrality in Lipschitz free Banach spaces
Autor: | Guerrero, Julio Becerra, López-Pérez, Ginés, Zoca, Abraham Rueda |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | The aim of this note is to study octahedrality in vector valued Lipschitz-free Banach spaces on a metric space under topological hypotheses on it. As a consequence, we get that the space of Lipschitz functions on a metric space valued in a dual Banach space satisfies the weak-star strong diameter two property, under natural topological hipothesess on the metric space. Also, we show an example proving that these hypotheses are optimal. Comment: 18 pages |
Databáze: | arXiv |
Externí odkaz: |