Autor: |
Szakács, Nóra, Szendrei, Mária B. |
Rok vydání: |
2015 |
Předmět: |
|
Zdroj: |
Journal of Algebra, Vol. 452 (2016) 42-65 |
Druh dokumentu: |
Working Paper |
DOI: |
10.1016/j.jalgebra.2015.11.043 |
Popis: |
Finite-above inverse monoids are a common generalization of finite inverse monoids and Margolis--Meakin expansions of groups. Given a finite-above $E$-unitary inverse monoid $M$ and a group variety $\mathit{U}$, we find a condition for $M$ and $\mathit{U}$, involving a construction of descending chains of graphs, which is equivalent to $M$ having an $F$-inverse cover via $\mathit{U}$. In the special case where $\mathit{U}=\mathit{Ab}$, the variety of Abelian groups, we apply this condition to get a simple sufficient condition for $M$ to have no $F$-inverse cover via $\mathit{Ab}$, formulated by means of the natural parial order and the least group congruence of $M$. |
Databáze: |
arXiv |
Externí odkaz: |
|