On F-inverse covers of finite-above inverse monoids

Autor: Szakács, Nóra, Szendrei, Mária B.
Rok vydání: 2015
Předmět:
Zdroj: Journal of Algebra, Vol. 452 (2016) 42-65
Druh dokumentu: Working Paper
DOI: 10.1016/j.jalgebra.2015.11.043
Popis: Finite-above inverse monoids are a common generalization of finite inverse monoids and Margolis--Meakin expansions of groups. Given a finite-above $E$-unitary inverse monoid $M$ and a group variety $\mathit{U}$, we find a condition for $M$ and $\mathit{U}$, involving a construction of descending chains of graphs, which is equivalent to $M$ having an $F$-inverse cover via $\mathit{U}$. In the special case where $\mathit{U}=\mathit{Ab}$, the variety of Abelian groups, we apply this condition to get a simple sufficient condition for $M$ to have no $F$-inverse cover via $\mathit{Ab}$, formulated by means of the natural parial order and the least group congruence of $M$.
Databáze: arXiv