Optimal Triangulation of Saddle Surfaces
Autor: | Atariah, Dror, Rote, Günter, Wintraecken, Mathijs |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Beitr\"age zur Algebra und Geometrie-Contributions to Algebra and Geometry 59, no. 1 (2018), 113-126 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s13366-017-0351-9 |
Popis: | We consider the piecewise linear approximation of saddle functions of the form $f(x,y)=ax^2-by^2$ under the L-infinity error norm. We show that interpolating approximations are not optimal. One can get slightly smaller errors by allowing the vertices of the approximation to move away from the graph of the function. Comment: 14 pages, 8 figures. The revision corrects the statements of Theorems 1-3 and fixes a few errors |
Databáze: | arXiv |
Externí odkaz: |