A Lower Bound for the Distributed Lov\'asz Local Lemma
Autor: | Brandt, Sebastian, Fischer, Orr, Hirvonen, Juho, Keller, Barbara, Lempiäinen, Tuomo, Rybicki, Joel, Suomela, Jukka, Uitto, Jara |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We show that any randomised Monte Carlo distributed algorithm for the Lov\'asz local lemma requires $\Omega(\log \log n)$ communication rounds, assuming that it finds a correct assignment with high probability. Our result holds even in the special case of $d = O(1)$, where $d$ is the maximum degree of the dependency graph. By prior work, there are distributed algorithms for the Lov\'asz local lemma with a running time of $O(\log n)$ rounds in bounded-degree graphs, and the best lower bound before our work was $\Omega(\log^* n)$ rounds [Chung et al. 2014]. Comment: 17 pages, 3 figures |
Databáze: | arXiv |
Externí odkaz: |