Explicit upper bounds for the spectral distance of two trace class operators

Autor: Bandtlow, Oscar F., Guven, Ayse
Rok vydání: 2015
Předmět:
Zdroj: Linear Algebra Appl. 466 (2015) 329-342
Druh dokumentu: Working Paper
DOI: 10.1016/j.laa.2014.10.008
Popis: Given two trace class operators A and B on a separable Hilbert space we provide an upper bound for the Hausdorff distance of their spectra involving only the distance of A and B in operator norm and the singular values of A and B. By specifying particular asymptotics of the singular values our bound reproduces or improves existing bounds for the spectral distance. The proof is based on lower and upper bounds for determinants of trace class operators of independent interest.
Comment: 11 pages
Databáze: arXiv