Radial Limits of Bounded Nonparametric PMC Surfaces

Autor: Entekhabi, Mozhgan, Lancaster, Kirk E.
Rok vydání: 2015
Předmět:
Zdroj: Pacific J. Math. 283 (2016) 341-351
Druh dokumentu: Working Paper
DOI: 10.2140/pjm.2016.283.341
Popis: Consider a solution $f\in C^{2}(\Omega)$ of a prescribed mean curvature equation \[ {\rm div}\left(\frac{\nabla f}{\sqrt{1+|\nabla f|^{2}}}\right)=2H(x,f) \ \ \ \ {\rm in} \ \ \Omega, \] where $\Omega\subset \Real^{2}$ is a domain whose boundary has a corner at ${\cal O}=(0,0)\in\partial\Omega.$ If $\sup_{x\in\Omega} |f(x)|$ and $\sup_{x\in\Omega} |H(x,f(x))|$ are both finite and $\Omega$ has a reentrant corner at ${\cal O},$ then the radial limits of $f$ at ${\cal O},$ \[ Rf(\theta) \myeq \lim_{r\downarrow 0} f(r\cos(\theta),r\sin(\theta)), \] are shown to exist and to have a specific type of behavior, independent of the boundary behavior of $f$ on $\partial\Omega.$ If $\sup_{x\in\Omega} |f(x)|$ and $\sup_{x\in\Omega} |H(x,f(x))|$ are both finite and the trace of $f$ on one side has a limit at ${\cal O},$ then the radial limits of $f$ at ${\cal O}$ exist and have a specific type of behavior.
Comment: 12 pages. Submitted to the Pacific Journal of Mathematics
Databáze: arXiv