On a construction due to Khoshkam and Skandalis
Autor: | Sundar, S. |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we consider the Wiener Hopf algebra, denoted $\mathcal{W}(A,P,G,\alpha)$, associated to an action of a discrete subsemigroup $P$ of a group $G$ on a $C^{*}$-algebra $A$. We show that $\mathcal{W}(A,P,G,\alpha)$ can be represented as a groupoid crossed product. As an application, we show that when $P=\mathbb{F}_{n}^{+}$, the free semigroup on $n$ generators, the $K$-theory of $\mathcal{W}(A,P,G,\alpha)$ and the $K$-theory of $A$ coincides. Comment: Preliminary version |
Databáze: | arXiv |
Externí odkaz: |