On a construction due to Khoshkam and Skandalis

Autor: Sundar, S.
Rok vydání: 2015
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper, we consider the Wiener Hopf algebra, denoted $\mathcal{W}(A,P,G,\alpha)$, associated to an action of a discrete subsemigroup $P$ of a group $G$ on a $C^{*}$-algebra $A$. We show that $\mathcal{W}(A,P,G,\alpha)$ can be represented as a groupoid crossed product. As an application, we show that when $P=\mathbb{F}_{n}^{+}$, the free semigroup on $n$ generators, the $K$-theory of $\mathcal{W}(A,P,G,\alpha)$ and the $K$-theory of $A$ coincides.
Comment: Preliminary version
Databáze: arXiv