Small-scale properties of a stochastic cubic-autocatalytic reaction-diffusion model
Autor: | Gagnon, Jean-Sebastien, Hochberg, David, Perez-Mercader, Juan |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Phys.Rev.E92:042114,2015 |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevE.92.042114 |
Popis: | We investigate the small-scale properties of a stochastic cubic-autocatalytic reaction-diffusion (CARD) model using renormalization techniques. We renormalize noise-induced ultraviolet divergences and obtain beta functions for the decay rate and coupling at one-loop. Assuming colored (power law) noise, our results show that the behavior of both decay rate and coupling with scale depends crucially on the noise exponent. Interpreting the CARD model as a proxy for a (very simple) living system, our results suggest that power law correlations in environmental fluctuations can both decrease or increase the growth of structures at smaller scales. Comment: 14 pages, 12 figures |
Databáze: | arXiv |
Externí odkaz: |