An inverse problem for weighted Paley-Wiener spaces
Autor: | Bessonov, R. V., Romanov, R. V. |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1088/0266-5611/32/11/115007 |
Popis: | Let $\mu$ be a measure on the real line $\mathbb{R}$ such that $\int_{\mathbb{R}}\frac{d\mu(t)}{1+t^2} < \infty$ and let $a>0$. Assume that the norms $\|f\|_{L^2(\mathbb{R})}$ and $\|f\|_{L^2(\mu)}$ are comparable for functions $f$ in the Paley-Wiener space $PW_{a}$ and that $PW_a$ is dense in $L^2(\mu)$. We reconstruct the canonical Hamiltonian system $JX' = zHX$ such that $\mu$ is the spectral measure for this system. Comment: 14 pages |
Databáze: | arXiv |
Externí odkaz: |