On the Narasimhan-Seshadri correspondence for Real and Quaternionic vector bundles

Autor: Schaffhauser, Florent
Rok vydání: 2015
Předmět:
Zdroj: J. Differential Geom. Volume 105, Number 1 (2017), 119-162
Druh dokumentu: Working Paper
DOI: 10.4310/jdg/1483655861
Popis: Let E be a Real or Quaternionic Hermitian vector bundle over a Klein surface M. We study the action of the gauge group of E on the space of Galois-invariant unitary connections and we show that the closure of a semi-stable orbit contains a unique unitary orbit of projectively flat, Galois-invariant connections. We then use this invariant-theoretic perspective to prove a version of the Narasimhan-Seshadri correspondence in this context: S-equivalence classes of semi-stable Real and Quaternionic vector bundes are in bijective correspondence with equivalence classes of certain appropriate representations of orbifold fundamental groups of Real Seifert manifolds over the Klein surface M.
Databáze: arXiv