On the Narasimhan-Seshadri correspondence for Real and Quaternionic vector bundles
Autor: | Schaffhauser, Florent |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | J. Differential Geom. Volume 105, Number 1 (2017), 119-162 |
Druh dokumentu: | Working Paper |
DOI: | 10.4310/jdg/1483655861 |
Popis: | Let E be a Real or Quaternionic Hermitian vector bundle over a Klein surface M. We study the action of the gauge group of E on the space of Galois-invariant unitary connections and we show that the closure of a semi-stable orbit contains a unique unitary orbit of projectively flat, Galois-invariant connections. We then use this invariant-theoretic perspective to prove a version of the Narasimhan-Seshadri correspondence in this context: S-equivalence classes of semi-stable Real and Quaternionic vector bundes are in bijective correspondence with equivalence classes of certain appropriate representations of orbifold fundamental groups of Real Seifert manifolds over the Klein surface M. |
Databáze: | arXiv |
Externí odkaz: |