Autor: |
Modak, Subhrajit, Singh, Akhil P., Panigrahi, P. K. |
Rok vydání: |
2015 |
Předmět: |
|
Zdroj: |
Eur. Phys. J. B 89, 149 (2016) |
Druh dokumentu: |
Working Paper |
DOI: |
10.1140/epjb/e2016-70130-7 |
Popis: |
We demonstrate the existence of complex solitary wave and periodic solutions of the Kortweg de-vries (KdV) and modified Kortweg de-Vries (mKdV) equations. The solutions of the KdV (mKdV) equation appear in complex-conjugate pairs and are even (odd) under the simultaneous actions of parity ($\cal{P}$) and time-reversal ($\cal{T}$) operations. The corresponding localized solitons are hydrodynamic analogs of Bloch soliton in magnetic system, with asymptotically vanishing intensity. The $\cal{PT}$-odd complex soliton solution is shown to be iso-spectrally connected to the fundamental $sech^2$ solution through supersymmetry. |
Databáze: |
arXiv |
Externí odkaz: |
|