Complex Solitary Waves and Soliton Trains in KdV and mKdV Equations

Autor: Modak, Subhrajit, Singh, Akhil P., Panigrahi, P. K.
Rok vydání: 2015
Předmět:
Zdroj: Eur. Phys. J. B 89, 149 (2016)
Druh dokumentu: Working Paper
DOI: 10.1140/epjb/e2016-70130-7
Popis: We demonstrate the existence of complex solitary wave and periodic solutions of the Kortweg de-vries (KdV) and modified Kortweg de-Vries (mKdV) equations. The solutions of the KdV (mKdV) equation appear in complex-conjugate pairs and are even (odd) under the simultaneous actions of parity ($\cal{P}$) and time-reversal ($\cal{T}$) operations. The corresponding localized solitons are hydrodynamic analogs of Bloch soliton in magnetic system, with asymptotically vanishing intensity. The $\cal{PT}$-odd complex soliton solution is shown to be iso-spectrally connected to the fundamental $sech^2$ solution through supersymmetry.
Databáze: arXiv