Efficient computation of Bayesian optimal discriminating designs
Autor: | Dette, Holger, Guchenko, Roman, Melas, Viatcheslav B. |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | An efficient algorithm for the determination of Bayesian optimal discriminating designs for competing regression models is developed, where the main focus is on models with general distributional assumptions beyond the "classical" case of normally distributed homoscedastic errors. For this purpose we consider a Bayesian version of the Kullback- Leibler (KL) optimality criterion introduced by L\'opez-Fidalgo et al. (2007). Discretizing the prior distribution leads to local KL-optimal discriminating design problems for a large number of competing models. All currently available methods either require a large computation time or fail to calculate the optimal discriminating design, because they can only deal efficiently with a few model comparisons. In this paper we develop a new algorithm for the determination of Bayesian optimal discriminating designs with respect to the Kullback-Leibler criterion. It is demonstrated that the new algorithm is able to calculate the optimal discriminating designs with reasonable accuracy and computational time in situations where all currently available procedures are either slow or fail. Comment: Keyword and Phrases: Design of experiment; Bayesian optimal design; model discrimination; gradient methods; model uncertainty; Kullback-Leibler distance. arXiv admin note: text overlap with arXiv:1412.2548 |
Databáze: | arXiv |
Externí odkaz: |