Geometry of Higgs bundles over elliptic curves related to automorphisms of simple Lie algebras, Calogero-Moser systems and KZB equations
Autor: | Levin, A., Olshanetsky, M., Zotov, A. |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Theoret. and Math. Phys. 188:2 (2016) 1121-1154 |
Druh dokumentu: | Working Paper |
DOI: | 10.1134/S0040577916080018 |
Popis: | We construct twisted Calogero-Moser (CM) systems with spins as the Hitchin systems derived from the Higgs bundles over elliptic curves, where transitions operators are defined by an arbitrary finite order automorphisms of the underlying Lie algebras. In this way we obtain the spin generalization of the twisted D'Hoker- Phong and Bordner-Corrigan-Sasaki-Takasaki systems. As by product, we construct the corresponding twisted classical dynamical r-matrices and Knizhnik-Zamolodchikov-Bernard equations related to the automorphisms of the Lie algebras. Comment: 35 pages + 2 tables |
Databáze: | arXiv |
Externí odkaz: |