Geometry of Higgs bundles over elliptic curves related to automorphisms of simple Lie algebras, Calogero-Moser systems and KZB equations

Autor: Levin, A., Olshanetsky, M., Zotov, A.
Rok vydání: 2015
Předmět:
Zdroj: Theoret. and Math. Phys. 188:2 (2016) 1121-1154
Druh dokumentu: Working Paper
DOI: 10.1134/S0040577916080018
Popis: We construct twisted Calogero-Moser (CM) systems with spins as the Hitchin systems derived from the Higgs bundles over elliptic curves, where transitions operators are defined by an arbitrary finite order automorphisms of the underlying Lie algebras. In this way we obtain the spin generalization of the twisted D'Hoker- Phong and Bordner-Corrigan-Sasaki-Takasaki systems. As by product, we construct the corresponding twisted classical dynamical r-matrices and Knizhnik-Zamolodchikov-Bernard equations related to the automorphisms of the Lie algebras.
Comment: 35 pages + 2 tables
Databáze: arXiv