Spatial chaos of Wang tiles with two symbols

Autor: Chen, Jin-Yu, Chen, Yu-Jie, Hu, Wen-Guei, Lin, Song-Sun
Rok vydání: 2015
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1063/1.4941734
Popis: This investigation completely classifies the spatial chaos problem in plane edge coloring (Wang tiles) with two symbols. For a set of Wang tiles $\mathcal{B}$, spatial chaos occurs when the spatial entropy $h(\mathcal{B})$ is positive. $\mathcal{B}$ is called a minimal cycle generator if $\mathcal{P}(\mathcal{B})\neq\emptyset$ and $\mathcal{P}(\mathcal{B}')=\emptyset$ whenever $\mathcal{B}'\subsetneqq \mathcal{B}$, where $\mathcal{P}(\mathcal{B})$ is the set of all periodic patterns on $\mathbb{Z}^{2}$ generated by $\mathcal{B}$. Given a set of Wang tiles $\mathcal{B}$, write $\mathcal{B}=C_{1}\cup C_{2} \cup\cdots \cup C_{k} \cup N$, where $C_{j}$, $1\leq j\leq k$, are minimal cycle generators and $\mathcal{B}$ contains no minimal cycle generator except those contained in $C_{1}\cup C_{2} \cup\cdots \cup C_{k}$. Then, the positivity of spatial entropy $h(\mathcal{B})$ is completely determined by $C_{1}\cup C_{2} \cup\cdots \cup C_{k}$. Furthermore, there are 39 equivalent classes of marginal positive-entropy (MPE) sets of Wang tiles and 18 equivalent classes of saturated zero-entropy (SZE) sets of Wang tiles. For a set of Wang tiles $\mathcal{B}$, $h(\mathcal{B})$ is positive if and only if $\mathcal{B}$ contains an MPE set, and $h(\mathcal{B})$ is zero if and only if $\mathcal{B}$ is a subset of an SZE set.
Databáze: arXiv