Vari\'et\'es de Kisin stratifi\'ees et d\'eformations potentiellement Barsotti-Tate
Autor: | Caruso, Xavier, David, Agnès, Mézard, Ariane |
---|---|
Jazyk: | francouzština |
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | J. Inst. Math. Jussieu 17 (2018) 1019-1064 |
Druh dokumentu: | Working Paper |
DOI: | 10.1017/S1474748016000232 |
Popis: | Let F be a unramified finite extension of Qp and rhobar be an irreducible mod p two-dimensional representation of the absolute Galois group of F. The aim of this article is the explicit computation of the Kisin variety parameterizing the Breuil-Kisin modules associated to certain families of potentially Barsotti-Tate deformations of rhobar. We prove that this variety is a finite union of products of P^1. Moreover, it appears as an explicit closed subvariety of P^1^[F:\Qp]. We define a stratification of the Kisin variety by locally closed subschemes and explain how the Kisin variety equipped with its stratification may help in determining the ring of Barsotti-Tate deformations of rhobar. Comment: in French |
Databáze: | arXiv |
Externí odkaz: |