Sharp affine Sobolev type inequalities via the $\Lp$ Busemann-Petty centroid inequality

Autor: Haddad, Julian, Jimenez, C. Hugo, Montenegro, Marcos
Rok vydání: 2015
Předmět:
Druh dokumentu: Working Paper
Popis: We show that the $\Lp$ Busemann-Petty centroid inequality provides an elementary and powerful tool to the study of some sharp affine functional inequalities with a geometric content, like log-Sobolev, Sobolev and Gagliardo-Nirenberg inequalities. Our approach allows also to characterize directly the corresponding equality cases.
Comment: 16 pages. Corrected version to appear in Journal of Functional Analysis
Databáze: arXiv