Sharp affine Sobolev type inequalities via the $\Lp$ Busemann-Petty centroid inequality
Autor: | Haddad, Julian, Jimenez, C. Hugo, Montenegro, Marcos |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We show that the $\Lp$ Busemann-Petty centroid inequality provides an elementary and powerful tool to the study of some sharp affine functional inequalities with a geometric content, like log-Sobolev, Sobolev and Gagliardo-Nirenberg inequalities. Our approach allows also to characterize directly the corresponding equality cases. Comment: 16 pages. Corrected version to appear in Journal of Functional Analysis |
Databáze: | arXiv |
Externí odkaz: |