Asymptotic Behaviour of Resonance Eigenvalues of the Schr\'odinger operator with a Matrix Potential

Autor: Karakılıç, Sedef, Akduman, Setenay, Coşkan, Didem
Rok vydání: 2015
Předmět:
Druh dokumentu: Working Paper
Popis: We will discuss the asymptotic behaviour of the eigenvalues of Schr\"{o}dinger operator with a matrix potential defined by Neumann boundary condition in $L_2^m(F)$, where $F$ is $d$-dimensional rectangle and the potential is a $m \times m$ matrix with $m\geq 2$, $d\geq 2$ , when the eigenvalues belong to the resonance domain, roughly speaking they lie near planes of diffraction. \textbf{Keywords:} Schr\"{o}dinger operator, Neumann condition, Resonance eigenvalue, Perturbation theory. \textbf{AMS Subject Classifications:} 47F05, 35P15
Databáze: arXiv