Annular Khovanov homology and knotted Schur-Weyl representations
Autor: | Grigsby, J. Elisenda, Licata, Anthony M., Wehrli, Stephan M. |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Compositio Math. 154 (2018) 459-502 |
Druh dokumentu: | Working Paper |
DOI: | 10.1112/S0010437X17007540 |
Popis: | Let L be a link in a thickened annulus. We show that its sutured annular Khovanov homology carries an action of the exterior current algebra of the Lie algebra sl_2. When L is an m-framed n-cable of a knot K in the three-sphere, its sutured annular Khovanov homology carries a commuting action of the symmetric group S_n. One therefore obtains a "knotted" Schur-Weyl representation that agrees with classical sl_2 Schur-Weyl duality when K is the Seifert-framed unknot. Comment: 38 pages, 8 figures |
Databáze: | arXiv |
Externí odkaz: |