Annular Khovanov homology and knotted Schur-Weyl representations

Autor: Grigsby, J. Elisenda, Licata, Anthony M., Wehrli, Stephan M.
Rok vydání: 2015
Předmět:
Zdroj: Compositio Math. 154 (2018) 459-502
Druh dokumentu: Working Paper
DOI: 10.1112/S0010437X17007540
Popis: Let L be a link in a thickened annulus. We show that its sutured annular Khovanov homology carries an action of the exterior current algebra of the Lie algebra sl_2. When L is an m-framed n-cable of a knot K in the three-sphere, its sutured annular Khovanov homology carries a commuting action of the symmetric group S_n. One therefore obtains a "knotted" Schur-Weyl representation that agrees with classical sl_2 Schur-Weyl duality when K is the Seifert-framed unknot.
Comment: 38 pages, 8 figures
Databáze: arXiv