Brane actions, Categorification of Gromov-Witten theory and Quantum K-theory
Autor: | Mann, Etienne, Robalo, Marco |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Geom. Topol. 22 (2018) 1759-1836 |
Druh dokumentu: | Working Paper |
DOI: | 10.2140/gt.2018.22.1759 |
Popis: | Let X be a smooth projective variety. Using the idea of brane actions discovered by To\"en, we construct a lax associative action of the operad of stable curves of genus zero on the variety X seen as an object in correspondences in derived stacks. This action encodes the Gromov-Witten theory of X in purely geometrical terms and induces an action on the derived category Qcoh(X) which allows us to recover the Quantum K-theory of Givental-Lee. Comment: final version, 64 pages, accepted for publication in Geometry & Topology |
Databáze: | arXiv |
Externí odkaz: |