A non-existence result on symplectic semifield spreads
Autor: | Capparelli, Stefano, Pepe, Valentina |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove that there do not exist non-Desarguesian symplectic semifield spreads of PG$(5,q^2)$, $q\geq 2^{14}$ even, whose associated semifield has center containing $\mathbb{F}_q$, by proving that the only $\mathbb{F}_q$-linear set of rank 6 disjoint from the secant variety of the quadric Veronese variety of PG$(5,q^2)$ is a plane with three points of the Veronese surface of PG$(5,q^6)\setminus$PG$(5,q^2)$. |
Databáze: | arXiv |
Externí odkaz: |