A re-interpretation of the Triangulum-Andromeda stellar clouds: a population of halo stars kicked out of the Galactic disk
Autor: | Price-Whelan, Adrian M., Johnston, Kathryn V., Sheffield, Allyson A., Laporte, Chervin F. P., Sesar, Branimir |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1093/mnras/stv1324 |
Popis: | The Triangulum-Andromeda stellar clouds (TriAnd1 and TriAnd2) are a pair of concentric ring- or shell-like over-densities at large $R$ ($\approx$ 30 kpc) and $Z$ ($\approx$ -10 kpc) in the Galactic halo that are thought to have been formed from the accretion and disruption of a satellite galaxy. This paper critically re-examines this formation scenario by comparing the number ratio of RR Lyrae to M giant stars associated with the TriAnd clouds with other structures in the Galaxy. The current data suggest a stellar population for these over-densities ($f_{\rm RR:MG} < 0.38$ at 95% confidence) quite unlike any of the known satellites of the Milky Way ($f_{\rm RR:MG} \approx 0.5$ for the very largest and $f_{\rm RR:MG} >>1$ for the smaller satellites) and more like the population of stars born in the much deeper potential well inhabited by the Galactic disk ($f_{\rm RR:MG} < 0.01$). N-body simulations of a Milky-Way-like galaxy perturbed by the impact of a dwarf galaxy demonstrate that, in the right circumstances, concentric rings propagating outwards from that Galactic disk can plausibly produce similar over-densities. These results provide dramatic support for the recent proposal by Xu et al. (2015) that, rather than stars accreted from other galaxies, the TriAnd clouds could represent stars kicked-out from our own disk. If so, these would be the first populations of disk stars to be found in the Galactic halo and a clear signature of the importance of this second formation mechanism for stellar halos more generally. Moreover, their existence at the very extremities of the disk places strong constraints on the nature of the interaction that formed them. Comment: 27 pages, 8 figures; published in MNRAS |
Databáze: | arXiv |
Externí odkaz: |