Group actions on spheres with rank one prime power isotropy
Autor: | Hambleton, Ian, Yalcin, Ergun |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Transactions Amer. Math. Soc. 368 (2016), 5951-5977 |
Druh dokumentu: | Working Paper |
DOI: | 10.1090/tran/6567 |
Popis: | We show that a rank two finite group G admits a finite G-CW-complex X homotopy equivalent to a sphere, with rank one prime power isotropy, if and only if G does not p'-involve Qd(p) for any odd prime p. This follows from a more general theorem which allows us to construct a finite G-CW-complex by gluing together a given G-invariant family of representations defined on the Sylow subgroups of G. Comment: 16 pages |
Databáze: | arXiv |
Externí odkaz: |