Lattice worldline representation of correlators in a background field
Autor: | Epelbaum, Thomas, Gelis, Francois, Wu, Bin |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We use a discrete worldline representation in order to study the continuum limit of the one-loop expectation value of dimension two and four local operators in a background field. We illustrate this technique in the case of a scalar field coupled to a non-Abelian background gauge field. The first two coefficients of the expansion in powers of the lattice spacing can be expressed as sums over random walks on a d-dimensional cubic lattice. Using combinatorial identities for the distribution of the areas of closed random walks on a lattice, these coefficients can be turned into simple integrals. Our results are valid for an anisotropic lattice, with arbitrary lattice spacings in each direction. Comment: 54 pages, 14 figures |
Databáze: | arXiv |
Externí odkaz: |