Suppression of Pauling's Residual Entropy in Dilute Spin Ice (Dy$_{1-x}$Y$_x$)$_2$Ti$_2$O$_7$

Autor: Scharffe, S., Breunig, O., Cho, V., Laschitzky, P., Valldor, M., Welter, J. F., Lorenz, T.
Rok vydání: 2015
Předmět:
Zdroj: Physical Review B 92, 180405(R) (2015)
Druh dokumentu: Working Paper
DOI: 10.1103/PhysRevB.92.180405
Popis: Around 0.5 K, the entropy of the spin-ice Dy$_2$Ti$_2$O$_7$ has a plateau-like feature close to Pauling's residual entropy derived originally for water ice, but an unambiguous quantification towards lower temperature is prevented by ultra-slow thermal equilibration. Based on specific heat data of (Dy$_{1-x}$Y$_x$)$_2$Ti$_2$O$_7$ we analyze the influence of non-magnetic dilution on the low-temperature entropy. With increasing x, the ultra-slow thermal equilibration rapidly vanishes, the low-temperature entropy systematically decreases and its temperature dependence strongly increases. These data suggest that a non-degenerate ground state is realized in (Dy$_{1-x}$Y$_x$)$_2$Ti$_2$O$_7$ for intermediate dilution. This contradicts the expected zero-temperature residual entropy obtained from a generalization of Pauling's theory for dilute spin ice, but is supported by Monte Carlo simulations.
Comment: 5 pages, 4 figures; slightly revised version to appear in PRB Rapid Communications
Databáze: arXiv