Weighted ${L^p}$-Liouville Theorems for Hypoelliptic Partial Differential Operators on Lie Groups

Autor: Bonfiglioli, Andrea, Kogoj, Alessia E.
Rok vydání: 2015
Předmět:
Druh dokumentu: Working Paper
Popis: We prove weighted $L^p$-Liouville theorems for a class of second order hypoelliptic partial differential operators $\mathcal{L}$ on Lie groups $\mathbb{G}$ whose underlying manifold is $n$-dimensional space. We show that a natural weight is the right-invariant measure $\check{H}$ of $\mathbb{G}$. We also prove Liouville-type theorems for $C^2$ subsolutions in $L^p(\mathbb{G},\check{H})$. We provide examples of operators to which our results apply, jointly with an application to the uniqueness for the Cauchy problem for the evolution operator $\mathcal{L}-\partial_t$.
Databáze: arXiv