An Algebraic Study of Multivariable Integration and Linear Substitution
Autor: | Rosenkranz, Markus, Gao, Xing, Guo, Li |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Joural Algebra and Its Applications, 18 (2019), 1950207, 51pp |
Druh dokumentu: | Working Paper |
Popis: | We set up an algebraic theory of multivariable integration, based on a hierarchy of Rota-Baxter operators and an action of the matrix monoid as linear substitutions. Given a suitable coefficient domain with a bialgebra structure, this allows us to build an operator ring that acts naturally on the given Rota-Baxter hierarchy. We conjecture that the operator relations are a noncommutative Groebner basis for the ideal they generate. Comment: 44 pages, 1 table |
Databáze: | arXiv |
Externí odkaz: |