An Algebraic Study of Multivariable Integration and Linear Substitution

Autor: Rosenkranz, Markus, Gao, Xing, Guo, Li
Rok vydání: 2015
Předmět:
Zdroj: Joural Algebra and Its Applications, 18 (2019), 1950207, 51pp
Druh dokumentu: Working Paper
Popis: We set up an algebraic theory of multivariable integration, based on a hierarchy of Rota-Baxter operators and an action of the matrix monoid as linear substitutions. Given a suitable coefficient domain with a bialgebra structure, this allows us to build an operator ring that acts naturally on the given Rota-Baxter hierarchy. We conjecture that the operator relations are a noncommutative Groebner basis for the ideal they generate.
Comment: 44 pages, 1 table
Databáze: arXiv