Saari's homographic conjecture for general masses in planar three-body problem under Newton potential and a strong force potential

Autor: Fujiwara, Toshiaki, Fukuda, Hiroshi, Ozaki, Hiroshi, Taniguchi, Tetsuya
Rok vydání: 2015
Předmět:
Zdroj: J. Phys. A: Math. Theor. 48, 265205 (2015)
Druh dokumentu: Working Paper
DOI: 10.1088/1751-8113/48/26/265205
Popis: Saari's homographic conjecture claims that, in the N-body problem under the homogeneous potential, $U=\alpha^{-1}\sum m_i m_j/r_{ij}^\alpha$ for $\alpha\ne 0$, a motion having constant configurational measure $\mu=I^{\alpha/2}U$ is homographic, where $I$ represents the moment of inertia defined by $I=\sum m_i m_j r_{ij}^2/\sum m_k$, $m_i$ the mass, and $r_{ij}$ the distance between particles. We prove this conjecture for general masses $m_k>0$ in the planar three-body problem under Newton potential ($\alpha=1$) and a strong force potential ($\alpha=2$).
Comment: Submitted to Journal of Physics A
Databáze: arXiv