Words in Linear Groups, Random Walks, Automata and P-Recursiveness
Autor: | Garrabrant, Scott, Pak, Igor |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Fix a finite set $S \subset {GL}(k,\mathbb{Z})$. Denote by $a_n$ the number of products of matrices in $S$ of length $n$ that are equal to 1. We show that the sequence $\{a_n\}$ is not always P-recursive. This answers a question of Kontsevich. Comment: 10 pages, 1 figure |
Databáze: | arXiv |
Externí odkaz: |