A geometrical model for the Monte Carlo simulation of the TrueBeam linac

Autor: Rodriguez, Miguel, Sempau, Josep, Fogliata, Antonella, Cozzi, Luca, Sauerwein, Wolfgang, Brualla, Lorenzo
Rok vydání: 2015
Předmět:
Zdroj: Phys. Med. Biol. 60 (2015) N219-N229
Druh dokumentu: Working Paper
DOI: 10.1088/0031-9155/60/11/N219
Popis: Monte Carlo (MC) simulation of linacs depends on the accurate geometrical description of the head. The geometry of the Varian TrueBeam (TB) linac is not available to researchers. Instead, the company distributes phase-space files (PSFs) of the flattening-filter-free (FFF) beams tallied upstream the jaws. Yet, MC simulations based on third party tallied PSFs are subject to limitations. We present an experimentally-based geometry developed for the simulation of the FFF beams of the TB linac. The upper part of the TB linac was modeled modifying the Clinac 2100 geometry. The most important modification is the replacement of the standard flattening filters by ad hoc thin filters which were modeled by comparing dose measurements and simulations. The experimental dose profiles for the 6MV and 10MV FFF beams were obtained from the Varian Golden Data Set and from in-house measurements for radiation fields ranging from 3X3 to 40X40 cm2. Indicators of agreement between the experimental data and the simulation results obtained with the proposed geometrical model were the dose differences, the root-mean-square error and the gamma index. The same comparisons were done for dose profiles obtained from MC simulations using the second generation of PSFs distributed by Varian for the TB linac. Results of comparisons show a good agreement of the dose for the ansatz geometry similar to that obtained for the simulations with the TB PSFs for all fields considered, except for the 40X40 cm2 field where the ansatz geometry was able to reproduce the measured dose more accurately. Our approach makes possible to: (i) adapt the initial beam parameters to match measured dose profiles; (ii) reduce the statistical uncertainty to arbitrarily low values; and (iii) assess systematic uncertainties by employing different MC codes.
Databáze: arXiv