Existence results for diffuse interface models describing phase separation and damage

Autor: Heinemann, Christian, Kraus, Christiane
Rok vydání: 2015
Předmět:
Zdroj: Eur. J. Appl. Math., 24(2):179-211, 2013
Druh dokumentu: Working Paper
DOI: 10.1017/S095679251200037X
Popis: In this paper, we analytically investigate multi-component Cahn-Hilliard and Allen-Cahn systems which are coupled with elasticity and uni-directional damage processes. The free energy of the system is of the form $\int_\Omega\frac{1}{2}\mathbf\Gamma\nabla c:\nabla c+\frac{1}{2}|\nabla z|^2+W^\mathrm{ch}(c)+W^\mathrm{el}(e,c,z)\,\mathrm dx$ with a polynomial or logarithmic chemical energy density $W^\mathrm{ch}$, an inhomogeneous elastic energy density $W^\mathrm{el}$ and a quadratic structure of the gradient of the damage variable $z$. For the corresponding elastic Cahn-Hilliard and Allen-Cahn systems coupled with uni-directional damage processes, we present an appropriate notion of weak solutions and prove existence results based on certain regularization methods and a higher integrability result for the strain $e$.
Databáze: arXiv