Random dynamical systems for stochastic evolution equations driven by multiplicative fractional Brownian noise with Hurst parameters $H\in (1/3,1/2]$
Autor: | Garrido-Atienza, María J., Schmalfuss, Björn, Lu, Kening |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We consider the stochastic evolution equation $ du=Audt+G(u)d\omega,\quad u(0)=u_0 $ in a separable Hilbert--space $V$. Here $G$ is supposed to be three times Fr\'echet--differentiable and $\omega$ is a trace class fractional Brownian--motion with Hurst parameter $H\in (1/3,1/2]$. We prove the existence of a global solution where exceptional sets are independent of the initial state $u_0\in V$. In addition, we show that the above equation generates a random dynamical system. Comment: 29 pages |
Databáze: | arXiv |
Externí odkaz: |