Quadratic forms representing the $p$-th Fibonacci number
Autor: | Berrizbeitia, Pedro, Luca, Florian, Mendoza, Alberto |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, we show that if $p\equiv 1\pmod 4$ is prime, then $4F_p$ admits a representation of the form $u^2-pv^2$ for some integers $u$ and $v$, where $F_n$ is the $n$th Fibonacci number. We prove a similar result when $p\equiv -1\pmod 4$. Comment: 5 pages |
Databáze: | arXiv |
Externí odkaz: |