Long time decay for 3D-NSE in Gevrey-Sobolev spaces
Autor: | Benameur, Jamel, Jlali, Lotfi |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper we prove, if $u$ is a global solution to Navier-Stokes equations in the Sobolev-Gevrey spaces $H^1_{a,\sigma}(\mathbb R^3)$, then $\|u(t)\|_{H^1_{a,\sigma}}$ decays to zero as time goes to infinity. Fourier analysis is used. Comment: 11 pages |
Databáze: | arXiv |
Externí odkaz: |