Invariants of the vacuum module associated with the Lie superalgebra gl(1|1)

Autor: Molev, A. I., Mukhin, E. E.
Rok vydání: 2015
Předmět:
Zdroj: J. Phys. A: Math. Theor. 48 (2015) 314001
Druh dokumentu: Working Paper
DOI: 10.1088/1751-8113/48/31/314001
Popis: We describe the algebra of invariants of the vacuum module associated with the affinization of the Lie superalgebra $\mathfrak{gl}(1|1)$. We give a formula for its Hilbert--Poincar\'{e} series in a fermionic (cancellation-free) form which turns out to coincide with the generating function of the plane partitions over the $(1,1)$-hook. Our arguments are based on a super version of the Beilinson--Drinfeld--Ra\"{i}s--Tauvel theorem which we prove by producing an explicit basis of invariants of the symmetric algebra of polynomial currents associated with $\mathfrak{gl}(1|1)$. We identify the invariants with affine supersymmetric polynomials via a version of the Chevalley theorem.
Comment: 24 pages, final version; contribution to Rodney Baxter volume, J.Phys. A
Databáze: arXiv