Slowing the probe field in the second window of double-double electromagnetically induced transparency

Autor: Alotaibi, Hessa M., Sanders, Barry C.
Rok vydání: 2015
Předmět:
Zdroj: Phys. Rev. A 91, 043817 (2015)
Druh dokumentu: Working Paper
DOI: 10.1103/PhysRevA.91.043817
Popis: For Doppler-broadened media operating under double-double electromagnetically induced transparency (EIT) conditions, we devise a scheme to control and reduce the probe-field group velocity at the center of the second transparency window. We derive numerical and approximate analytical solutions for the width of EIT windows and for the group velocities of the probe field at the two distinct transparency windows, and we show that the group velocities of the probe field can be lowered by judiciously choosing the physical parameters of the system. Our modeling enables us to identify three signal-field strength regimes (with a signal-field strength always higher than the probe-field strength), quantified by the Rabi frequency, for slowing the probe field. These three regimes correspond to a weak signal field, with the probe-field group velocity and transparency window width both smaller for the second window compared to the first window, a medium-strength signal field, with a probe-field group velocity smaller in the second window than in the first window but with larger transparency-window width for the second window, and the strong signal field, with both group velocity and transparency window width larger for the second window. Our scheme exploits the fact that the second transparency window is sensitive to a temperature-controlled signal-field nonlinearity, whereas the first transparency window is insensitive to this nonlinearity.
Databáze: arXiv