Siegel's theorem on integral points and the Jacobian conjecture over the rational field
Autor: | Van Chau, Nguyen |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | It is shown that a polynomial map $(P,Q)\in \mathbb{Q}[x,y]^2$ with $P_xQ_y-P_yQ_x \equiv 1$ has an inverse map in $\mathbb{Q}[x,y]^2$ if the fiber $P=0$ contains an infinite subset of $ d^{-1}\mathbb{Z}^2$ for an integer $d$. Comment: Some reference information added |
Databáze: | arXiv |
Externí odkaz: |