On equivariant and invariant topological complexity of smooth $\mathbb{Z}/p$-spheres

Autor: Błaszczyk, Zbigniew, Kaluba, Marek
Rok vydání: 2015
Předmět:
Zdroj: Proc. Amer. Math. Soc. 145 (2017), 4075-4086
Druh dokumentu: Working Paper
DOI: 10.1090/proc/13528
Popis: We investigate equivariant and invariant topological complexity of spheres endowed with smooth non-free actions of cyclic groups of prime order. We prove that semilinear $\mathbb{Z}/p$-spheres have both invariants either $2$ or $3$ and calculate exact values in all but two cases for linear actions. On the other hand, we exhibit examples which show that these invariants can be arbitrarily high in the class of smooth $\mathbb{Z}/p$-spheres.
Comment: New title; minor changes to improve readability. Final version, to appear in Proc. Amer. Math. Soc. 12 pages, no figures
Databáze: arXiv