Supremum distribution of Bessel process of drifting Brownian motion

Autor: Pyć, Andrzej, Serafin, Grzegorz, Żak, Tomasz
Rok vydání: 2015
Předmět:
Druh dokumentu: Working Paper
Popis: Let (B^{(1)}_t ;B^{(2)}_t ;B^{(3)}_t + \mu t) be a three-dimensional Brownian motion with drift \mu, starting at the origin. Then X_t = ||(B^{(1)}_t ;B^{(2)}_t ;B^{(3)}_t +\mu t)||, its distance from the starting point, is a diffusion with many applications. We investigate the distribution of the supremum of (X_t), give an infinite-series formula for its density and an exact estimate by elementary functions.
Databáze: arXiv