The Steiner-Lehmus theorem and 'triangles with congruent medians are isosceles' hold in weak geometries
Autor: | Pambuccian, Victor, Struve, Horst, Struve, Rolf |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove that (i) a generalization of the Steiner-Lehmus theorem due to A. Henderson holds in Bachmann's standard ordered metric planes, (ii) that a variant of Steiner-Lehmus holds in all metric planes, and (iii) that the fact that a triangle with two congruent medians is isosceles holds in Hjelmslev planes without double incidences of characteristic $\neq 3$. |
Databáze: | arXiv |
Externí odkaz: |